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Abstract

Zobrist hash functions are hash functions that hash go positions to

fixed-length bit strings. They work so that every intersection i on a go

board is associated with two values Bi and Wi. To hash a position, all

those values of Bi are XORed together that correspond to an intersec-

tion with black stone on it. Similarly, all Wi’s are XORed together for

those intersections that have a white stone. Then the results are XORed

together.

We present a Zobrist hash function with the extra property that if z is

the hash value of a position p, then the values z′ for the positions p′ that

are obtained from p by exchanging the colors, by rotating the position

and my mirroring can be efficiently calculated from z alone. Still, z and

z′ are different.

1 Theory

The dihedral group of a square is the eight-element group corresponding to the
rotations and mirrorings of a square. Let a denote rotation by 90 degrees, say,
clockwise, and b denote mirroring along, say, the vertical axis. Let 1 denote the
identity translation. The dihedral group is defined by the following equations:

a4 = 1, b2 = 1, aba = b.

Every element of the group can be written down as

ban1ban2b · · · bankb

where 0 ≤ ni < 4 because b2 = 1. Now all the b’s can be moved to the left
because ankb = ank−1ba−1 = ank−1ba3. Thus every group element can be
written as bxan, where x ∈ {0, 1} and n ∈ {0, . . . , 3}. Therefore there can be at
most eight elements, namely

1, a, a2, a3, b, ba, ba2, ba3,

and these elements are actually distinct.
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Let S4 denote the symmetric group of degree four. Then the dihedral group
can be implemented as a subgroup of S4 by choosing

a =

(

1 2 3 4
2 3 4 1

)

and

b =

(

1 2 3 4
4 3 2 1

)

.

Namely, letting ǫ denote the identity permutation, obviously b2 = ǫ and a4 = ǫ,
and

aba =

(

1 2 3 4
4 3 2 1

)

= b.

Let N be a board size. Let B = ZN × ZN be the set of intersections on
a board. Let C : B 7→ {e, b, w} be the set of board positions, i.e. functions
mapping the intersections to empty, black and white, respectively. Let ρ : C 7→
C be the function implementing 90-degree rotation counterclockwise, when (0, 0)
denotes the lower-left corner:

ρ(c)(x, y) = c(18 − y, x),

µ : C 7→ C the function implementing mirroring:

µ(c)(x, y) = c(18 − x, y),

and κ : C 7→ C the function implementing the color exchange:

κ(c)(x, y) = E(c(x, y))

where E(e) = e, E(w) = b and E(b) = w.
We want now to develop a specific 64-bit Zobrist hash function Z : C 7→Z64 that (1) is a Zobrist hash function, and (2) has three associated functions

Zρ, Zµ, Zκ : Z64 7→ Z64 such that

Zx(Z(c)) = Z(x(c))

for x ∈ {ρ, µ, κ}.
We will define Z(c) as

Z(c) =
⊕

(x,y)∈ZN×ZN

c(x, y) = e → 0,

c(x, y) = b → ZB(x, y),
ZW (x, y),

thus as a normal Zobrist hash function with the empty board mapping to zero.
Bit permutations are linear. Thus, if π : Z64 7→ Z64 is a bit permutation,

π(Z(c)) =
⊕

(x,y)

c(x, y) = e → 0,

c(x, y) = b → π(ZB(x, y)),
π(ZW (x, y)).
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We are going to define Zρ, Zµ and Zκ as bit permutations. Let z =
z1, z2, z3, z4, z5, z6, z7, z8 be a 64-bit hash value written down as eight consecu-
tive bytes. We then define

Zρ(z) =z2, z3, z4, z1, z6, z7, z8, z5

Zµ(z) =z4, z3, z2, z1, z8, z7, z6, z5

Zκ(z) =z5, z6, z7, z8, z1, z2, z3, z4.

We pose the following restrictions upon the choice of ZB and ZW :

ZB(18 − x, y) = Zµ(ZB(x, y))

ZB(18 − y, x) = Zρ(ZB(x, y))

ZW (x, y) = Zκ(ZB(x, y)).

That these restrictions can be fulfilled stems from the fact that Zµ and Zρ form
the dihedral group for the first and last four bytes, and Zκ just corresponds to
exchanging the halves.

Theorem. Zx(Z(c)) = Z(x(c)) for x ∈ {ρ, µ, κ}.
Proof. Immediate because Zρ, Zµ and Zκ are bit-wise permutations. It

is therefore enough to show that the claim holds for positions with exactly one
white or black stone. But for those positions the claim holds directly because
of the previous restrictions.

2 Implementation

It remains to ponder how to actually implement this hash function.
For those intersections that do not lie on any of the four symmetry axes it

is easy to find the values of ZB: choose randomly ZB(x, y) for some points,
and calculate the values of the symmetrical images of those points by using the
formulae above.

For the remaining cases, the tengen must have ZB = z1z1z1z1z2z2z2z2 for
some z1, z2.

On the diagonal axes the hash value must be ZB = z1z2z3z2z4z5z6z5 for
a stone in the lower-left quadrant for some zi. This is because in addition to
the equations of the dihedral group, for these elements rotation and mirroring
become either equivalent or inverses depending on the position of the stone.

On the axes through tengen, the hash value must be ZB = z1z1z2z2z3z3z4z4

for a stone on the horizontal axis. This is because in addition to the equation
of the dihedral group, for these elements mirroring is either identity operation
(on the vertical axis) or equivalent to two rotations (on the horizontal axis).

3 Notes

The implementation of Sec. 2 has the undesirable property that for example the
position where there are four black stones on the four central side hoshi points
hash the hash value zero. This is an anomaly.
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This anomaly can be removed if instead of using the idempotent XOR oper-
ator the operator for combining hash values is chosen differently. We could use
for example byte-wise addition modulo 256.
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