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The ISO/IEC 9796-1 standard

is a digital signature scheme giving message recovery, using redundancy, built on
the RSA or Rabin public key cryptosystems. The signed message, of limited
length, is embedded in the signature :

It was designed 1989-1990, approved in 1991 as ISO/IEC 9796

ISO/IEC 9796  =  ISO/IEC 9796-1  but  ≠ ISO/IEC 9796-2 (hash-based)

A key design criteria was to use no hash function, for which there was no widely
accepted standard : the now ubiquitous Secure Hash Algorithm was adopted in
1993 and revised as SHA-1 in 1995

The ISO/IEC 9796 standard was designed to resist known attacks, without formal
security analysis. Practical RSA signature schemes with provable security
appeared years later [1] and use a hash function.

[1] Bellare, M. and Rogaway, P: The exact security of digital signatures, how to
sign with RSA and Rabin, Eurocrypt 1996
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The function producing the redundant message  M  must be an easily invertible
injection, in order to provide message recovery on the verifier side.

Problem, it is easy to construct random messages with known signature :
just select S arbitrarly, compute the matching message M = V(S) and with some
trial and error a message that “makes sense” may be found.

A signature scheme from the RSA cryptosystem can not  be as simple as

- signing message M with the secret key by

- recovering M using the public key

- checking M makes sense (how ?)

S = S(M) = M   mod nd

RSA signature : the need for redundancy
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M = V(S) = S   mod ne

To avoid this and automate the “makes sense” test, a widely used technique is to
add some redundant information in the value submitted to the secret function S,
and check this redundant information on the verifier side.

For example about one attempt out of 10   will give a valid C or Pascal string of
at least three ASCII letters in a sensible case.

~



For example the message  M = 123456h  may have signature S = S(M) with
M = 0000000000000000000000000012345600000000000000000000000000123456h

On the verifier side it is checked V(S) is made of two identical halves.

~

One of the first redundancy technique has been straight duplication of a message
of size fixed to half the size of the public modulus  n

RSA signature : simple redundancy

With public exponent  e=3 , knowing the signature S of the above message and
noticing that S(1000h) = 10h  one can compute the signature for message
123456000h as   (10h.S mod n)

~

Aside from the fact that the all-zero message has trivial signature, this approach
can be attacked using the “multiplicative” property of the RSA cryptosystem :

 S(A B)  =  (S(A) S(B) mod n)

Many other attacks on simple redundancy schemes are known [2]

[2] Misarsky J. F., How (not) to design RSA signature schemes, Public-key
cryptography, Springer-Verlag, LNCS 1431.
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We restrict our description, and the attack, to public modulus  n  of  16z-2 to 16z+2
bits and messages M of 8z bits (half the key size); these are common parameters.
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The additional formatting of ISO 9796-1 makes M 1 bit shorter than  n, and for
even public exponent  e  ascertains the Jacobi symbol is +1 before exponentiation;
the cryptosystem remains reversible using the fact that M ≡ 6  mod 16
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The attack plan
We select one pair of small integers  a, b  and construct the set of message pairs
A, B  such that corresponding expanded messages verify :

When two message pairs A, B  and  C, D  are solution of the above, we have :

We'll see how to solve this equation very simply.

thus

The multiplicative property of the RSA cryptosystem does the rest :

S(A D) = S(B C)~ ~ ~ ~ thus S(A)S(D) ≡ S(B)S(C)  mod n~ ~

A D = B C~

S(D) = S(A) S(B) S(C)  mod n~ -1And we get

With a minor complication due to the formatting prescribed by ISO 9796-1, the
signature of message D is deduced from the signature of the three messages A B
C and the public modulus.

S(A)  mod n   can be computed from S(A) using the Extended Euclidian algorithm.

~ a
b
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B

=~ (2)
where    M        M   is the
ISO 9796-1 redundancy function
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~ aA =Finding messages A,B  with

Choice of  a,b
we can restrict to  a<b  and  a,b  relatively prime
the 4 right bits of F1 are  6    thus solution may exist only for  a ≡ b  mod 8
the left bit of Fz is always 1,  implying  a < 2b    and finaly  9 ≤ a < b < 2a

where    M        M
is the injection shown
built from  z  small injections

~

Reformulating the problem
For hypothetical solution  A,B  there is a uniquely defined integer  W  such that

We break A, B, W  into 16 bits segments in the above multiplication, and the
problem becomes finding segments of  W  such that the resulting segments of A, B
are among the 256 acceptable values defined by the Fi functions.

bB~
8z
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~
A = a W B = b Wand (3)
~ ~

~
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The search turns into an easy graph traversal

A = a W B = b Wand
~ ~During the multiplications by 16 bits segments

we have overflows propagating from a segment to the next left segment, these are
noted ai, bi in the paper. Whe have  0≤ai<a  and  0≤bi<b.

For each of the  z  16 bits segments, we can easily build the matching values of
overflows on the right, on the left, value of segment of W, and corresponding
segment in A,B. These  z  problems can be solved indepently, then assembled
into a graph linked by the overflows, and with the additional constraint that the left
and right overflows are 0,0. The search for a solution is equivalent to traversing
the graph.

An optimisation, used in the algorithm given in the paper, is to build only these
portions of the graph that are connected to one side. The paper also shows how
the overflows can conveniently be stored a as single quantity, the link, which can
take at most a+b-1 values.

At this point we have found how to solve

if  there are solutions, but have not shown there are any.

~ a
b
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In this graph values of message bytes are shown at each
node. For example, the bottom link give the solution
A = 85f27d64ef64ef64ef64ef64ef152c07
B = 14ba7bf39df39df39df39df39d6ad958

Since this graph is periodic in the center, it can readily be used for larger keys like
1024 bits, provided  k ≡ 0 mod 32. Finding 4 messages suitable for the attack is as
simple as finding two distinct solutions for this maze.

Solutions for a 256 bits modulus and ratio a/b = 11/19
Building the graph for the second simplest ratio gives

with indeed
~ 11
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Path counting

To count the number of path throught the graph ,we label right nodes with 1, then
each node on the left with the sum of it's ancestors. The total number of path is the
sum of the left nodes. In this graph, we have 42 distinct message pairs. It is easy
to see the number of paths grows as a Fibonnaci sequence when the key size
grows by 32 bits increments.
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How many messages are suitable for the attack ?

A simple program builds the graph, count solutions, and output some messages in
seconds. For k=1024 bits and restricting to b<1024, we have about 9% of the
13264 explored ratios that are usable (give at least two message pairs). We get
about 5.7 10      such pairs, among which 98% are for the ratio 389/525 which
gives 2      pairs.

14
49

Open problems :
- why and how do solutions thin out when  a  and  b  increase ?
- could the three injections be modified to block the attack ?
- what if the center injection are not all alike ?
the search algorithm works unmodified and there are solutions for many choices of
injections, but in what proportion ?

Asymptoticaly, when the modulus bit size k grows by 16 bits, we have twice as
many pairs when k = 16z-2, 16z or 16z+2, or about 1.62177 times more pairs
when k = 16z-1 or 16z+1.

Constraints on the messages, which occur often in practice, actually make the
search easier, and there are solutions even with some degree of constraint, like
“nearly entirely ASCII” or “entirely displayable” messages.



Is it practical ?
The main result is obtaining the forged signature of 1 message from the signature
of 3 other messages, for all usual choices of key size, regardless of the public
exponent  e.

When the public exponent  e  is even, we can use the attack to find a non-trivial
square root modulus n, then factor n (a total break of the system) from the
signature of 4 chosen messages. This reduces to 2 signatures when e=2 (the most
likely choice of even e). This would be a threat to an off-the-shelf Smart Card
implementation of ISO/IEC 9796-1 signature, if it allows signature of externally
generated messages.

A vulnerable setup would be one where signatures of arbitrary messages are
available for a price. The attacker can get 2x signatures for the price of x+2.
Things may get even worse if the price is part of the message.

But the attack works only for messages that are in some narrow subset of the
possible messages, and thus in practice works only if the attacker
- can obtain the signature of messages he or she choose in this subset before
submitting them for signature,
- and has a benefit in obtaining the signature of another message in this subset.
This classifies the attack as a “Chosen Messages Attack”.



Because the adversary must be able to obtain signatures of special messages,
the attack does not  appear to be a threat in quite a few scenarios, including
- when the signer builds the whole message,
- or when the message is, or includes, a secure hash.

Can we still use ISO/IEC 9796-1 ?

But resistance to chosen message attacks is a desirable property, and as a result
of previous chosen messages attacks [3][4] and the present one, the SC27 group
considers withdrawing the standard, which makes another reason to avoid it for
new applications.

[3] Coron, J. S. and Naccache, D. and Stern, J. P.: A new signature forgery
strategy applicable to ISO 9796-1/2, ECASH™, PKCS #1 V2.0, ANSI X9.31,
SSL-3.02. Circulated as ISO/IEC JTC1/SC27 N2329 alias WG2 N429, May 1999.

[4] Coppersmith, D. and Halevi, S. and Jutla, C.: ISO 9796-1 and the new forgery
strategy (Working Draft), August 1999.
See <http://grouper.ieee.org/groups/1363/contrib.html>


