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Abstract. This paper presents a new signature forgery strategy.

When applied to iso 9796-1, iso 9796-2, pkcs #1 v2.0, ecashtm

, ansi

x9.31 and ssl-3.02, our analysis reveals the existence of weaknesses

which make forgery substantially easier than frontal attacks on hash-

then-decrypt RSA (collisions and factoring).

It took less than a day to forge thousands of 1024-bit iso 9796-1 RSA

signatures on a powerful PC. iso 9796-2 signatures with 64 � kh � 80

(kh is the digest-size recommended in x5 note 4 of iso 9796-2) could be

forged in a few weeks in similar experimental conditions. In ssl-3.02, we

show that speci�c bit-patterns in n (frequently motivated by computa-

tional e�ciency or storage optimization) might degrade security if speci-

�ed malevolently. Finally, ecashtm

, pkcs #1 v2.0 and ansi x9.31 could

o�er less resistance than expected in some speci�c situations.

1 Introduction

At a recent count (http://www.rsa.com), over 300 million RSA-enabled prod-
ucts had been shipped worldwide. This popularity, and the ongoing standardiza-
tions of signature and encryption formats [1, 24, 26, 27, 41] highlight the need to
challenge claims that such standards eradicate RSA's multiplicative properties.

Exponentiation is homomorphic and RSA-based protocols are traditionally
protected against chosen-plaintext forgeries [13, 15, 40] by using a padding (or
redundancy) function � to make sure that :

RSA(�(x)) �RSA(�(y)) 6= RSA(�(x� y))mod n

In general, �(x) hashes x and concatenates its digest to pre-de�ned strings;
in some cases, substitution and permutation are used as well.



While most padding schemes gain progressive recognition as time goes by,
several speci�c results exist : a few functions were broken by ad-hoc analysis
([20, 29] showed, for instance, that homomorphic dependencies can still appear
in �(m) = a�m+ b) while at the other extreme, assuming that the underlying
building-blocks are ideal, some functions [3, 4] are provably secure in the random
oracle model.

Unbroken padding formats are therefore challenging targets in a rarely visited
hunting-area. The contribution of this paper is that the complexity of forging
message-signature couples is frequentlymuch lower than that of breaking RSA��
by frontal attacks (factoring and collision-search).

The strategy introduced in this article does not brave the invia of RSA's
traditional security assumptions; instead, it seeks for Naccache-Stern-like short-
cuts [36] using the expected smoothness of moderate-size integers.

As usual, our playground will be a setting in which the attacker A and the
signer S interact as follows :

� A asks S to provide the signatures of � chosen messages (� being polyloga-
rithmically-bounded in n). S will, of course, hash and pad all the plaintexts
before raising them to his secret power d.

� After the query phase and some post-processing, A must exhibit a message-
signature pair for at least one message which has never been submitted to S.

Previous work :Misarsky's PKC'98 invited survey [35] is probably the most
complete and the best documented reference on multiplicative RSA forgeries.
Davida's observation [13] is the focal point of most RSA forgery techniques.
[20, 29] forge signatures that are similar to pkcs #1 v2.0 but do not to produce
their necessary SHA/MD5 digests [37, 39]. [18, 19] analyze the security of RSA
signatures in an interactive context. Michels et al. [33] create relations between
the exponents of de Jonge-Chaum and Boyd's schemes; their technique extends
to blind-RSA but does not apply to any of the padding schemes attacked in this
paper. Bleichenbacher [5] exhibited a powerful attack on pkcs #1 encryption;
this attack is however completely di�erent from the ones presented here. Finally,
Baudron and Stern [2] apply lattice reduction to analyze the security of RSA��
in a security-proof perspective.

2 The attack

Let fn; eg be an RSA public key and d be the corresponding secret key. Although
in this paper � will alternatively denote iso 9796-1, iso 9796-2, ecashtm, pkcs
#1 v2.0, ansi x9.31 or ssl-3.02 we will start by describing our attack in a
simpler scenario where � is SHA-1 or MD5 (in other words, messages will only
be hashed before being exponentiated); once understood, the attack will be pro-
gressively adapted to the di�erent padding standards mentioned above.

The outline of our idea is the following : since �(m) is rather short (128 or
160 bits), the probability that �(m) is `-smooth (for a reasonably small `) is



small but non-negligible; consequently, if A can obtain the signatures of smooth
�(mi)-values, then he could look for a messagem0 such that �(m0) has no bigger
factors than pk (the k-th prime) and construct �(m0)dmod n as a multiplicative
combination of the signatures of the chosen plaintexts m1; : : : ;m� . The di�culty
of �nding `-smooth digests is a function of ` and the size of �(m0). De�ning
 (x; y) = #fv < x, such that v is y-smoothg, it is known [16, 17, 23] that, for
large x, the ratio  (x; t

p
x)=x is equivalent to Dickman's function de�ned by :

�(t) =

8>><
>>:

1 if 0 � t � 1

�(n)�
Z t

n

�(v � 1)

v
dv if n � t � n+ 1

�(t) is thus an approximation of the probability that a u-bit number is 2u=t-
smooth; since �(t) is somewhat cumbersome to compute, we refer the reader to
appendix A for a lookup table.

Before we proceed, let us illustrate the concerned orders of magnitude. Re-
ferring to appendix A, we see that the probability that SHA/MD5 digests are
224-smooth is rather high (�= 2�19; 2�13); this means that �nding smooth di-
gests would be practically feasible. This was con�rmed by extensive simulations
as illustrated by :

MD5(message 30854339 successfully forged) =
955dd317dd4715d26465081e4bfac00016 =

214 � 3� 53 � 13� 227� 1499� 1789� 2441� 4673� 4691� 9109� 8377619

Several heuristics can, of course, accelerate the search : in our experiments,
we factored only digests beginning or ending by a few zeroes; the optimal num-
ber of zeroes being a straightforward byproduct of �(t) and the ratio between
the running times of the attacker's hashing and factorization algorithms (paral-
lelization is also a possible option).

In any case, denoting by L the size of the digest and by F (L) the factoring
cost, the complexity of �nding pk-smooth digests is :

CL;k = O( F (L)

�(L= log2(pk))
) = O( kL log2(pk)

�(L= log2(pk))
) = O( kL log2(k ln k)

�(L= log2(k ln k))
)

this is motivated by the fact that pk-smooth L-bit digests are expected only
once per 1=�(L= log2(pk)) and that the most straightforward way to factor L
is k trial divisions by the �rst primes (where each division costs L log2(pi) bit-
operations).

These formulae should, however, be handled with extreme caution for the
following reasons :



� Although in complexity terms L can be analyzed as a variable, one should
constantly keep in mind that L is a �xed value because the output size of speci�c
hash functions is not extensible.

� Trial division is de�nitely not the best candidate for F (L). In practice, our
program used the following strategy to detect the small factors of �(m) : since
very small divisors are very common, it is worthwhile attempting trial and error
division up to pi �= 2048 before applying a primality test to �(m) (the candidate
is of course rejected if the test fails). As a next step, trial and error division by
primes smaller than 15; 000 is performed and the resulting number is handed-
over to Pollard-Brent's algorithm [7] which is very good at �nding small factors.
Since it costs O(ppi) to pull-out pi using Pollard-Brent's method we can further
bound F (L) by L

p
pk :

CL;k = O( L
p
k ln k

�(L= log2(k ln k))
)

As illustrated in appendix B, the attacker can optimize his resources by
operating at a k where CL;k is minimal.

3 Finding homomorphic dependencies

As explained in the previous sections, we start by submitting the chosen messages
m1; : : : ;m� to S. All selected messages have the property that there exists a
linear combination of �(mi) and n such that :

ai � n� bi � �(mi) is pk-smooth

where bi is pk-smooth as well.

It follows that �(mi) is the modular product of small primes :

�(mi) =

kY
j=1

p
vi;j
j mod n for 1 � i � �

Let us associate to each �(mi) a k-dimensional vector Vi with coordinates
vi;j taken modulo the public exponent e :

�(mi) 7�! Vi = fvi;1mod e; : : : ; vi;kmod eg
We can now express, by Gaussian elimination, one of these vectors (re-

indexed as V� ) as a linear combination of the others :

V� =

��1X
i=1

�iVi mod e; with �i 2 ZZe (1)

From equation (1) we get :



v�;j =

��1X
i=1

�ivi;j � 
j � e for all 1 � j � k

and the signature of m� can be computed from the other signatures by :

�(m� )
d =

� kY
j=1

p

j
j

��1 �
��1Y
i=1

�
�(mi)

d
��i

mod n

It remains, however, to estimate � as a function of k :

� In the most simple setting e is prime and the set of vectors with k coordi-
nates over ZZe is a k-dimensional linear space; � = k+1 vectors are consequently
su�cient to guarantee that (at least) one of the vectors can be expressed as a
linear combination of the others.

�When e is the r-th power of a prime p, the set of vectors with k coordinates
modulo e is an additive group of order pkr. Let �` be the sub-group of order p

a`

spanned by the set fV1; : : : ;V`g. (a`)`�1 is a non-decreasing sequence of integers
with 1 � a` � kr for ` � 1. Thus there exists an integer ` with 1 � ` � kr for
which a` = a`+1 andV`+1 can be expressed as a linear combination of the vectors
V1; : : : ;V`. We therefore see that in this case � = kr + 1 vectors are su�cient
to ensure that (at least) one signature can be expressed as a multiplicative
combination of the others.

� The previous argument can be extended, mutatis mutandis, to the most
general case :

e =

!Y
i=1

prii

where it appears that :

� = 1 + k

!X
i=1

ri = O(k log e)

vectors are su�cient to guarantee that (at least) one vector is a linear com-
bination of the others.

The overall complexity of our attack can therefore be bounded by :

C 0
L;k = O(�CL;k) = O( Lk log e

p
k ln k

�(L= log2(k ln k))
)

which presents again a local minimum depicted in Appendix C.

Space complexity (dominated by the Gaussian elimination) is O(k2 log2 e).



4 Attacking the di�erent standards

4.1 Forging iso/iec-9796-1 signatures

iso/iec-9796-1 [26] was published in 1991 by ISO as the �rst international stan-
dard for digital signatures. It speci�es padding formats applicable to algorithms
providing message recovery (algorithms are not explicit but map ` bits to ` bits).
iso 9796-1 is not hashing-based and there are apparently no attacks [20, 22]
other than factoring on this scheme ([35] : "...iso 9796-1 remains beyond the

reach of all multiplicative attacks known today..."). The scheme is used to sign
messages of limited length and works as follows when n and m are respectively
N = 2
 + 1 and 
-bit numbers.

De�ne by a � b the concatenation of a and b, let mi be the nibbles of m and
denote by s(x) a substitution table (cf. to appendix G) such that s(616) = 216 :

�(m) = �s(m`�1) �s(m`�2) �m`�1 �m`�2 �
s(m`�3) �s(m`�4) �m`�3 �m`�4 �
: : :

s(m3) �s(m2) �m3 �m2 �
s(m1) �s(m0) �m0 �616

where �s(x) forces the most signi�cant bit in s(x) to 1.

Let aj denote nibbles and consider messages of the form :

mi = a6 � a5 � a4 � a3 � a2 � a1 � 6616�
a6 � a5 � a4 � a3 � a2 � a1 � 6616�
: : :

a6 � a5 � a4 � a3 � a2 � a1 � 6616
for which :

�(mi) = �s(a6) �s(a5) �a6 �a5 � s(a4) �s(a3) �a4 �a3 �
s(a2) �s(a1) �a2 �a1 � 216 �216 �616 �616 �
: : :

s(a6) �s(a5) �a6 �a5 � s(a4) �s(a3) �a4 �a3 �
s(a2) �s(a1) �a2 �a1 � 216 �216 �616 �616

Restricting the choice of a6 to the (eight) nibbles for which s = �s, we can
generate 223 numbers of the form �(mi) = x��23 where x is the 8-byte number
s(a6) � s(a5) � a6 � a5 � s(a4) � s(a3) � a4 � a3 � s(a2) � s(a1) � a2 � a1 � 226616 and :

�23 =


=32�1X
i=0

264i

Section 3 can now plainly apply (treat �23 as an extra pi) and forge signatures
provided that :



k + 1� 223 � �(64= log2(pk)) (2)

Using k = 3000 we forged thousands of 1024-bit signatures in less than a
day on a 200 MHz Pentium-PC (an example is given in Appendix D). The com-
plexity of our attack (summarized in table 1) is independent of integer constants
multiplying 1024 : it is not harder to forge 1024-bit signatures than it is to
forge 2048-bit ones; nor does the attack depend on the precise value of n (once
computed, the same messages work with (1024� c+ 1)-bit n for any c 2 IN).

k chosen messages forgeries

345 346 1

500 799 298

1000 3203 2202

1500 6198 4697

2000 9344 7343

2500 12555 10054

3000 15830 12829

Table 1. Experimental forgeries of 1024-bit iso 9796-1 signatures.

The attack is equally applicable to 32, 48, 80, 96 or 112-bit x-strings (which
yield 7, 15, 31, 39 and 47-bit plaintext spaces); a combined attack, mixing x-
strings of di�erent types is also possible (this has the drawback of adding the un-
knowns �7; �15; : : : but improves the probability of �nding pk-smooth x-strings).
Long plain-English messages ending by the letter f can be forged using a more
technical approach sketched in appendix I (6616 represents the ASCII charac-
ter f). Note, as a mere curiosity, a slight (�= 11%) experimental deviation from
formula 2 due to the non-uniform distribution of the x-strings (which most and
least signi�cant bits can never be long sequences of zeroes). Finally, since the
powers of 2 and �23 are identical, one can use k chosen messages instead of k+1,
packing p1 = 2 and pk+1 = �23 into the updated unknown p1 = 2�23.

The above indicates that a modi�cation of iso 9796-1 is necessary.

4.2 The security of iso 9796-2 signatures for 128 � L � 160

iso 9796-2 is a generic standard where hash-functions of di�erent sizes are pos-
sible; parameter L (re-named kh) is consequently a variable [27].

The standard speci�es the following padding algorithm : the message m =
m[1] � m[2] is separated into two parts where m[1] consists of the N � L � 16
most signi�cant bits of m and m[2] of all the remaining bits of m.

The padding function is :

�(m) = 6A16 �m[1] �HASH(m) � BC16



andm[2] is transmitted in clear. Section 5, note 4 of the standard recommends
64 � L � 80 when there is no m[2] (i.e. m is entirely included in �(m)) and
128 � L � 160 in the general case where a part of m is transmitted in clear.

To keep the analysis simple, we will �rst analyze a setting where m[2] exists
and L = 160 (SHA); once understood, the attack will be generalized to 128 �
L � 160; the case 64 � L � 80 will be broken separately in the next section.

Note that the pattern 6A16 = 0110101002 is su�cient to insure that �(m) <
n when the leading nibble of n is one of the digits : 716,: : :,F16. The attack
assumes that the most signi�cant byte of n is D416 or D516 (which happens with
probability 1=64 �= 1:5%); when the most signi�cant byte of n is not D416 or
D516, the attacker can simply look for the smallest i such that the leading bits
of n0 = i� n are 110101002 and apply the attack to n0; one can show that the
expected size of i is �= 6:8 bits.

Let us represent such moduli as binary strings n = 110101002 � n[1] � n[0]
where n[1] is an (N � 176)-bit pattern and n[0] is 169-bit long.

Form the message m = u � n[1] and the string :

� = 110101002 � n[1] � SHA(m) � 17816
since n and � are nearly identical, we get :

t = n� � = n[0]� SHA(m) � 17816 �= 2168

Referring to appendix A, t is 216-smooth with probability �(168=16) �= 2�40.
The forger will thus modify u (and therefore SHA(m)) until he hits a 216-smooth
t and, using Gaussian elimination, compute e

p
t by multiplication. This is done by

submitting to S queries for which n�2�(m) �= 2168 is 216-smooth, and adapting
the formulae of section 3 accordingly; the attack was con�rmed by simpli�ed
simulations using a computational short-cut.

The attack is again independent of the size of n (RSA's complexity barrier
has thus been neutralized : forging 4096-bit signatures is not harder than forging
512-bit ones) but, unlike our iso 9796-1 attack, forged messages are speci�c to
a given n and can not be recycled when attacking di�erent moduli (forgeries
could however be recycled if one generates n as in section 2.2 of [30]).

To optimize e�orts, A must use the k minimizing :

(L+ 8)k
p
k ln k

�((L+ 8)= log2(k ln k))

the optimal time and space complexities for L = 160 and L = 128 are much
lower than the birthday complexities of SHA and MD5 and seem well-adapted
to an Internet-distributed attack.

L = kh optimal log2 k log2 time log2 space
128 16 51 32
160 20 60 40

Table 2. Attacks on iso 9796-2.



4.3 Forging iso 9796-2 signatures for 64 � L � 80

When the whole message is embedded in �(m), we must sacri�ce some smooth-
ness and use a few message bits as a counter. In the typical setting where f is a
64-bit iso 9797 DES-MAC [28] and :

�(m) = 0110101002 �m � f(m) � BC16
one can forge signatures in a few PC-weeks as follows : form the 232 messages

mw = n[1] �w (represent w as 32-bit string) and apply section 3 to the subset of
messages for which n � 2�(mw) �= 2L+40 is pk-smooth (the 40 in the exponent
is the sum of the 8 bits of BC16 and the 32 bits of w).

The complexities summarized in the following table look alarming enough to
suggest a modi�cation of this standard.

L = kh optimal log2 k log2 time log2 space
64 14 45 28
80 16 49 32

Table 2 (continued). Attacks on iso 9796-2.

4.4 The security of ecashtm signatures

ecashtm is a software-based payment system providing anonymity for the payer.
ecashtm can send PC-to-PC payments over the Internet and has already been
adopted by several banks in Norway, Austria, Germany, Switzerland, Finland
and Australia [42].

In ecashtm,m forms the less signi�cant bits of �(m); to some extent, ecashtm is
a reversed iso 9796-2 where :

y0 = m and yi+1 = SHA(yi) � yi
and the padded message �(m) = yt is truncated so that �(m) < n.

In the available speci�cations (op. cit.), m is restricted to 160-bits. Although
for this message-size � is very secure, security degrades when m is �= N � 160
bits long :

�(m) = SHA(m) �m
To attack this instance, form the (N � 160)-bit messages :

mw = w � (nmod 2N�160�`)

where w is an `-bit counter and :

n� �(mw)

2N�160�`
�= 2160+`

the rest of the attack is similar to the one on iso 9796-2.



4.5 Analyzing pkcs #1 v2.0, ssl-3.02 and ansi x9.31

This section describes attacks on pkcs #1 v2.0, ssl-3.02 and ansi x9.31 which
are better than the birthday-paradox. Since our attacks are not general (for
they apply to moduli of the form n = 2k � c), they do not endanger current

implementations of these standards but have the sole (yet important) merit of
showing that the concerned schemes open the door to attacks which would have
been impossible otherwise. Note however, that n = 2k� c o�ers regular 1024-bit
RSA security as far as c is not much smaller than 2500, and square-free c-values
as small as 400 bits may even be used [30]. In general (n > 2512) such moduli
appear to o�er regular security as long as c �= p

n and c is square-free [31].

Although particular, n = 2k � c has been advocated by a number of cryp-
tographers for it allows trial and error divisions to be avoided. For instance,
the informative annex of iso 9796-1 recommends "...some forms of the modulus

[that] simplify the modulo reduction and need less table storage :

n = 264x � c of length k = 64x bits

n = 264x + c of length k = 64x+ 1 bits

where 1 � y � 2x and c � 264x�8y � 2c."

The reader is referred to section 14.3.4 of [32] and [11, 43, 44, 45] for further
references.

Assume that we are given a 1024-bit n = 2k � c, where log2(c)
�= 400 and c

is square-free; we start by analyzing ssl-3.02 where :

�(m) = 000116 � FFFF16 : : :FFFF16 � 0016 � SHA(m) �MD5(m)

Subtracting n � 215 � �(m) we get a 400-bit number t and conduct an iso

9796-2-like attack which expected complexity is :

400k
p
k ln k

�(400= log2(k ln k))

The characteristics of the attack are summarized in table 3 which should be
compared to the birthday paradox's f2144 time, 2144 spaceg and the hardness of
factorization (Appendix E).

log2 n log2 c optimal log2 k log2 time log2 space
606 303 28 84 56
640 320 29 87 58
768 384 33 97 66
1024 400 34 99 68
1024 512 39 115 78

Table 3. Attacks on ssl 3.02.



The attack also scales-down to pkcs #1 v2.0 (see appendix F) where :

�(m) = 000116 � FFFF16 : : :FFFF16 � 0016 � cSHA � SHA(m)

�(m) = 000116 � FFFF16 : : :FFFF16 � 0016 � cMD5 �MD5(m)

and :

log2 n log2 c optimal log2 k log2 time log2 space
512 256 23 77 46
548 274 27 80 54

Table 4. Attacks on pkcs #1 v2.0 and ansi x9.31.

Although satisfactory, these �gures do not appear much better than a birthday-
attack on SHA, even for rather small (550-bit) moduli.

Note that the attack described in this section extends to n = 2k + c as well
(multiply �(m) by 214 to cause a borrow chain-reaction during the subtraction,
which yields again a small t).

A similar analysis where the prescribed moduli begin by 6BBBBB : : :16 is ap-
plicable to ansi x9.31 (yielding exactly the same complexities as for pkcs #1

v2.0) where :

�(m) = 6B16 � BBBB16 : : : BBBB16 � BA16 � SHA(m) � 33CC16
Since ansi x9.31 already recommends to avoid n = 2k � c, it might be

appropriate to recommend avoiding n = 6BBBBB : : :16 as well.

We will now consider a theoretical setting in which an authority certi�es
pkcs #1 v2.0 moduli generated by users who wish to join a network; naturally,
users never reveal their secret keys but using storage optimizations as a pretext,
the authority implements an ID-based scheme where di�erent random looking

bits (registration ID, account numbers etc) are forced into the most signi�cant
bits of each n [31, 43]. Users generate moduli having the prescribed patterns
they receive.

If the authority can �nd two small constants fu; vg such that :

u� n� v � �(m) �= 2� for a moderate �. (3)

then our attack would extend to moduli which are not necessarily of the
form 2k � c. To do so, oversimplify the setting to n = n[1] � n[0] and �(m) =
(2k � 1) � f(m) and substitute these de�nitions in equation 3 :

u� (n[1] � n[0])� v � ((2k � 1) � f(m)) �= 2�

since the authority has no control over f(m), the best thing to do would be
to request that u � n[1] = v � (2k � 1) which results in an � �= log2(f(m)) +
log2(maxfu; vg).

The authority can thus prescribe moduli which most signi�cant bits are (2k�
1)=ui where ui are moderate-size factors of 2

k�1. Such factors [8] look innocuous



and should not raise suspicion as illustrated in the following example where
u = 199957736328435366769577 :

2253 � 1

u
= C1781158CEFC1F6F33E8D8F07070A914443FAC95DF6716

We can therefore conclude that although tolerable, the use of authority-
speci�ed moduli in pkcs #1 v2.0, ansi x9.31 and ssl-3.02 might be a ques-
tionable practice. This con�rms Bellare and Rogaway's intuition [4] :

"...We draw attention to the fact that the security of hash-then-decrypt sig-

nature depends very much on how exactly one implements hash. In particular,

it is important to recognize that the security of a signature scheme like pkcs

can't be justi�ed given (only) that RSA is trapdoor one-way, even under the

assumption that hash function H is ideal. (The reason is that the set of points

pkcs(m) : fm 2 f0; 1g�g has size at most 2128 and hence is very sparse, and

a very structured, subset of ZZ
�
n). We consider this to be a disadvantage. We

stress that we don't know of any attack on this scheme. But we prefer, for such

important primitives, to have some proof of security rather than just an absence

of known attacks..."

5 Conclusion and further research

Although the analysis presented in this paper indicates that iso 9796-1 and iso
9796-2 (for 64 � L � 128) should be modi�ed, products using these standards
should not be systematically withdrawn; six analyzes of iso 9796-based products
reveal that system-level speci�cations (message contents, insu�cient access to S
etc.) frequently make real-life attacks harder than expected. In two other cases
our attack had severe product security consequences. iso 9796 users wishing to
have their system speci�cations reviewed may contact the second author.

Full-domain-hash o�ers the best possible protection against our attack and
we advocate its systematic use whenever possible. If impossible, it seems appro-
priate to link L and N since for a �xed L there is necessarily a point (birthday)
above which increasing N will slow-down the legitimate parties without improv-
ing security.

We also recommend three research directions : although we have no speci�c
instances for the moment, one could try to combine our technique with [2] to
speed-up forgery in speci�c situations. When e is even, A could try to construct
all-zero relations and factor n; this has more devastating consequences than the
attacks described in this paper as A could later forge signatures of any chosen
messages. Finally, it appears that incomplete ad-hoc analyzes of hash-functions
(building digests with u prescribed bits in less than 2u operations) could be the
source of new problems in badly designed padding schemes.
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APPENDIX A

The following (redundant) look-up table lists � for the various smoothness
and digest-size values concerned by this paper; �(288=24), the probability that
a 288-bit number has no prime factors larger than 224 is 2�46:2 :

� log2 �& 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

32 1.7 0.9 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

48 4.4 2.7 1.7 1.1 0.8 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

64 7.7 5.0 3.4 2.4 1.7 1.2 0.9 0.7 0.5 0.3 0.2 0.0 0.0 0.0 0.0

80 11.5 7.7 5.4 3.9 2.9 2.2 1.7 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.2

96 15.6 10.7 7.7 5.7 4.4 3.4 2.7 2.1 1.7 1.4 1.1 0.9 0.8 0.6 0.5

112 20.1 13.9 10.2 7.7 5.9 4.7 3.8 3.1 2.5 2.1 1.7 1.4 1.2 1.0 0.8

128 24.9 17.4 12.8 9.8 7.7 6.1 5.0 4.1 3.4 2.8 2.4 2.0 1.7 1.4 1.2

136 27.4 19.2 14.2 10.9 8.6 6.9 5.6 4.6 3.9 3.2 2.8 2.3 2.0 1.7 1.5

144 29.9 21.1 15.6 12.0 9.5 7.7 6.3 5.2 4.4 3.7 3.1 2.7 2.3 2.0 1.7

152 32.4 22.9 17.1 13.2 10.5 8.5 7.0 5.8 4.9 4.1 3.5 3.0 2.6 2.3 2.0

160 35.1 24.9 18.6 14.4 11.5 9.3 7.7 6.4 5.4 4.6 3.9 3.4 2.9 2.6 2.2

168 37.9 26.9 20.1 15.6 12.5 10.2 8.4 7.0 5.9 5.1 4.4 3.8 3.3 2.9 2.5

176 40.6 28.9 21.7 16.9 13.5 11.0 9.1 7.7 6.5 5.6 4.8 4.2 3.6 3.2 2.8

184 43.4 30.9 23.3 18.2 14.6 11.9 9.9 8.3 7.1 6.1 5.2 4.6 4.0 3.5 3.1

192 46.2 33.0 24.9 19.5 15.6 12.8 10.7 9.0 7.7 6.6 5.7 5.0 4.4 3.8 3.4

200 49.0 35.1 26.5 20.8 16.7 13.7 11.5 9.7 8.3 7.1 6.2 5.4 4.7 4.2 3.7

208 51.9 37.4 28.2 22.1 17.8 14.7 12.3 10.4 8.9 7.7 6.7 5.8 5.1 4.5 4.0

216 54.8 39.6 29.9 23.5 19.0 15.6 13.1 11.1 9.5 8.2 7.2 6.3 5.5 4.9 4.4

224 57.7 41.7 31.6 24.9 20.1 16.6 13.9 11.8 10.2 8.8 7.7 6.7 5.9 5.3 4.7

232 60.7 44.0 33.3 26.3 21.3 17.6 14.8 12.6 10.8 9.4 8.2 7.2 6.4 5.7 5.0

240 63.7 46.2 35.1 27.7 22.5 18.6 15.6 13.3 11.5 10.0 8.7 7.7 6.8 6.0 5.4

248 66.7 48.5 37.0 29.1 23.7 19.6 16.5 14.1 12.1 10.5 9.2 8.1 7.2 6.4 5.8

256 69.8 50.7 38.8 30.6 24.9 20.6 17.4 14.9 12.8 11.2 9.8 8.6 7.7 6.8 6.1

264 72.9 53.0 40.6 32.1 26.1 21.7 18.3 15.6 13.5 11.8 10.3 9.1 8.1 7.3 6.5

272 76.0 55.4 42.5 33.6 27.4 22.7 19.2 16.4 14.2 12.4 10.9 9.6 8.6 7.7 6.9

280 79.1 57.7 44.3 35.1 28.6 23.8 20.1 17.2 14.9 13.0 11.5 10.2 9.0 8.1 7.3

288 82.3 60.1 46.2 36.8 29.9 24.9 21.1 18.0 15.6 13.7 12.0 10.7 9.5 8.5 7.7

296 85.5 62.5 48.1 38.3 31.2 26.0 22.0 18.9 16.4 14.3 12.6 11.2 10.0 9.0 8.1

304 88.7 64.9 50.0 39.9 32.4 27.1 22.9 19.7 17.1 15.0 13.2 11.7 10.5 9.4 8.5

312 91.9 67.3 51.9 41.4 33.7 28.2 23.9 20.5 17.8 15.6 13.8 12.3 11.0 9.8 8.9

320 95.2 69.8 53.8 43.0 35.1 29.3 24.9 21.4 18.6 16.3 14.4 12.8 11.5 10.3 9.3

384 122. 90.0 68.8 56.0 46.2 38.2 33.0 28.7 24.9 22.0 19.5 17.4 15.6 14.0 12.8

400 129. 95.2 73.9 59.2 49.0 41.5 35.1 30.2 26.5 23.1 20.8 18.5 16.7 15.1 13.7

512 179. 133 104 84.0 69.8 59.0 50.8 44.0 38.8 34.1 30.6 27.2 24.9 22.5 20.6

The table uses the exact formula (section 2) for t � 10 and de Bruijn's
approximation [9, 10] for t > 10 :

�(t) �= (2�t)�1=2 exp
�

 � t� +

Z �

0

es � 1

s
ds
�

where � is the positive solution of e� � 1 = t� and 
 is Euler's constant.
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APPENDIX D

This appendix contains an iso 9796-1 forgery that works with any 1025-bit
modulus; to �t into the appendix, the example was computed for e = 3 but
forgeries for other public exponents are as easy to obtain.

step 1 : Select any 1025-bit RSA modulus, generate d = 3�1mod �(n), let
� = iso 9796-1 and form the 180 messages :

mi = (256� message[i]16 + 102)�
11X
j=0

232j

where message denotes the elements of the following table :

00014E 008C87 00D1E8 01364B 0194D8 01C764 021864 03442F 0399FB 048D9E

073284 0863DE 09CCE8 0A132E 0A2143 0BD886 0C364A 0C368C 0C6BCF 0D3AC1

0D5C02 0EA131 0F3D68 0F9931 31826A 31BE81 31ED6B 31FCD0 320B25 32B659

332D04 3334D8 33EAFC 33EB1D 343B49 353D02 35454C 35A1A9 36189E 362C79

365174 3743AB 3765F6 37C1E2 3924AC 3998A8 3AF8A7 3B6900 3B9EEB 3BC1FF

3DE2DE 3E51BE 3E8191 3F49F3 3F69AC 4099D9 40BF29 41C36C 41D8C0 424EE8

435DB7 446DC1 4499CC 44AA20 44EE53 4510E8 459041 45A464 45AA03 460B80

4771E7 486B6A 499D40 4A5CF8 4AC449 4ADA0A 4B87A8 4C06A1 4C5C17 4D4685

4E39EA 4EB6B6 4F8464 716729 71C7D3 71FA22 722209 72DBF1 7619AB 765082

767C39 76885C 78F5F3 79E412 79FAD6 7CD0ED 7D0ABA 7DBA1D 7DE6A5 7E06A2

7EA5F2 7EC1ED 7EEC78 90BB4B 90DE38 9139D7 934C2C 9366C5 941809 941BFB

947EB4 94DB29 952D45 9745BD 978897 97A589 9827AF 984FAC 9A193D 9A83E2

9B74E3 9BEAE9 9C704F 9DBA98 9F9337 A00D15 A02E3D A10370 A429A6 A4DADD

A4F689 A5485D A6D728 A76B0F A7B249 A87DF3 A95438 A96AA4 AB1A82 AD06A8

AEA0D0 AEB113 D076C5 D13F0E D18262 D1B0A7 D35504 D3D9D4 D3DEE4 D4F71B

D91C0B D96865 DA3F44 DB76A8 DE2528 DE31DD DE46B8 DE687D DEB8C8 DF24C3

DFDFCF DFF19A E12FAA E1DD15 E27EC1 E39C56 E40007 E58CC8 E63CE0 E6596C

E7831E E796FB E7E80C E85927 E89243 E912B4 E9BFFF EA0DFC EACF65 EB29FA

step 2 : construct the message m0 = EE7E8E6616 �
P11

j=0 2
32j and obtain

from the signer the 180 signatures si = �(mi)
dmod n.

step 3 : the signature of m0 is :

�(m0)d =

345Y
i=0

p
�gamma[i]
i

180Y
i=1

sbeta[i]i mod n

where pi denotes the i-th prime (with the exception p0 = �23) and beta

denotes the elements of the following table :



1 2 1 2 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 1 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 1

1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 2 1 1 2 1

1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2

1 1 1 2 2 2 2 1 2 2 1 1 2 2 2 2 1 1 2 1 2 2 2 2 1 1 1 2 1 1 2 1 1 1 1 2

2 1 1 1 1 2 2 1 2 2 1 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 1 2 2 1 1 2 1 1

gamma represents the hexadecimal values :

57 57 68 33 27 18 16 13 10 0F 0E 0B 09 09 0D 05 0B 07 04 08 07 07 07 09 0A 03 07

04 05 05 03 04 03 01 02 03 04 03 01 03 03 03 02 06 03 03 04 06 02 04 04 02 02 03

02 04 04 03 04 01 04 03 02 03 02 01 02 02 01 03 01 01 01 01 03 03 01 03 02 02 01

04 02 04 02 02 01 02 01 01 01 03 03 01 02 01 01 00 03 02 03 01 01 02 01 02 02 03

03 04 03 03 02 03 01 02 03 02 01 03 02 02 01 01 00 02 01 01 03 01 01 01 01 01 02

00 02 00 00 01 02 01 01 01 00 01 01 00 01 01 02 02 01 01 01 00 01 00 01 01 04 02

02 02 01 02 02 01 02 01 02 00 01 00 02 01 02 02 00 01 02 01 01 01 02 01 01 01 02

01 00 01 01 00 00 01 02 00 01 00 01 01 00 01 00 01 02 02 01 01 02 00 00 02 01 02

02 01 00 00 01 00 01 00 01 00 02 00 00 00 01 01 00 00 01 01 00 00 00 01 00 00 00

00 00 00 01 01 00 00 01 02 01 01 01 00 01 02 01 01 01 02 00 00 00 01 01 00 01 00

00 00 02 02 01 00 01 02 00 01 00 01 02 00 01 00 00 01 00 01 01 01 00 01 01 00 01

01 01 01 00 00 01 01 00 00 01 01 00 01 01 00 00 01 00 00 00 01 01 02 02 01 01 00

00 01 02 01 02 00 01 01 00 01 00 00 00 00 00 00 01 00 00 01 02 01

APPENDIX E

The next table, adapted from [38], converts MIPS-years (by convention a one
MIPS machine is equivalent to the DEC VAX 11/780 in computing power) to
powers of two expressing the estimated complexities of di�erent factoring e�orts.
As usual, such empirical �gures should only be used as rough estimates, subject
to constant algorithmic improvements.

log2 n log2 time log2 space
512 64 39
640 70 42
768 75 45
1024 86 50
2048 116 66
4096 155 86

APPENDIX F

The constants cMD5 and cSHA have no cryptographic importance and encode
various format data (we include them in this appendix for completeness and
reference [25] for further details).

cSHA = 3021300906052B0E03021A0500041416
cMD5 = 3020300C06082A864886F70D02050500041016



APPENDIX G

Function s in iso 9796-1 maps the hexadecimal nibble x to the hexadecimal
s(x)-values listed in the following table :

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

s(x) = E 3 5 8 9 4 2 F 0 D B 6 7 A C 1

The four bits of s(x) are respectively x4�x2�x1, x4�x3�x1, x4�x3�x2
and x3 � x2 � x1 where xi denotes the i-th bit of x.

APPENDIX H

Note that independently of the attack of section 4.1, the use of moduli with
prescribed patterns could also be a source of smoothness in iso 9796-1; we see
no better illustration than using the nISO > 2512 given as example in Annex B
section B.1.1. of iso 9796-1 for which :

FF7716 � nISO � FFFF16 � �(m) �= 2401

where :

m = 7777777777777777FEDE17FC6EE81EDA

F3E370E4f504A4148C0C6E328052D41216

other examples are easy to produce.

APPENDIX I

The attack's time-consuming part is the exhaustive search of k appropriate
x-strings; therefore, when one wants the x-stings to be 256-bit messages, the
increase in k makes the attack impractical.

To overcome this problem, we suggest the following : as a �rst step, col-
lect a big number (e.g. pk �= 240) of moderate-size smooth x-strings (which
are relatively easy to �nd) and, using Gaussian elimination, extract the e-th
roots of the k �rst primes. Then, exhaustive-search two plain-English 256-bit
messages fm;m0g ending by the letter f such that �(m) and �(m0) are both pk-
smooth. The probability that a 256-bit number is pk-smooth is �= 2�15 and since
we only need two such numbers, the overall workload is very tolerable. Next,
submit m to S and divide its signature by the appropriate pi-roots to obtain
� d = (2256 + 1)dmod n. Using � d and the e-th roots of the k �rst primes we
can now forge, by multiplication, the signature of m0.

This article was processed using the LATEX macro package with LLNCS style


